1. Xia CY#, Wang ZZ#, Wang HQ, Ren SY, Lou YX, Jin C, Qu TG, Feng ST, Zhang Y, Chu SF, Chen NH*. Connexin 43: A novel ginsenoside Rg1-sensitive target in a rat model of depression. Neuropharmacology, 2020; 170:108041.
2. Lou YX#, Wang ZZ#, *, Xia CY, Mou Z, Ren Q, Liu DD, Zhang X, Chen NH*. The protective effect of ginsenoside Rg1 on depression may benefit from the gap junction function in hippocampal astrocytes. European Journal of Pharmacology, 2020; 882:173309.
3. Wang HQ, Yang SW, Gao Y, Liu YJ, Li X, Ai QD, Lin MY, Yang YT, Zeng Q, Zhang Y, Wang ZZ*, Chen NH*. Novel antidepressant mechanism of ginsenoside Rg1: Regulating biosynthesis and degradation of connexin43. Journal of Ethnopharmacology,2021: 114212.
4. Xia CY, Chu SF, Zhang S, Gao Y, Ren Q, Lou YX, Luo P, Tian MT, Wang ZQ, Du GH, Tomioka Y, Yamakuni T, Zhang Y, Wang ZZ*, Chen NH*. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. Journal of Ethnopharmacology, 2017; 208: 207-213.
5. Zhang YN, Zhang XL, Liu N, Ren SY, Xia CY, Yang X, Lou YX, Wang HQ, Zhang NN, Yan X, Zhang Z, Zhang Y, Wang ZZ*, Chen NH*. Comparative proteomic characterization of ventral hippocampus in susceptible and resilient rats subjected to chronic unpredictable stress. Frontiers in Neuroscience, 2021; doi:10.3389/fnins.2021.675430.
6. Ren SY, Zhang YN, Wang MJ, Wen BR, Xia CY, Li X, Wang HQ, Zhang RP, Yi-Zhang, Wang ZZ*, Chen NH*. Hair growth predicts a depression-like phenotype in rats as a mirror of stress traceability. Neurochemistry International, 2021: 105110.
7. Wang HQ, Wang ZZ*, Chen NH*. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacological Research, 2021; 167: 105542.
8. Wang ZZ, Zhang Y, Liu YQ, Zhao N, Zhang YZ, Yuan L, An L, Li J, Wang XY, Qin JJ, Wilson SP, O’Donnell JM, Zhang HT, Li YF*. RNA interference-mediated phosphodiesterase-4D splice variants knockdown in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. British Journal of Pharmacology, 2013; 168: 1001-1014.
9. Wang ZZ, Yang WX, Zhang Y, Zhao N, Zhang YZ, Liu YQ, Xu Y, Wilson SP, O’Donnell JM, Zhang HT, Li YF*. Phosphodiesterase-4D Knock-down in the Prefrontal Cortex Alleviates Chronic Unpredictable Stress-Induced Depressive-Like Behaviors and Memory Deficits in Mice. Scientific Reports, 2015; 5: 11332.
10. Yang PF#, Wang ZZ#, Zhang Z, Liu DD, Manolios EN, Chen C, Yan X, Zuo W, Chen NH*, The extended application of The Rat Brain in Stereotaxic Coordinates in rats of various body weight. Journal of Neuroscience Methods, 2018; 307: 60-69.
11. Wang ZZ, Zhang Y, Zhang HT, Li YF*. Phosphodiesterase (PDEs): An interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases. Current Pharmaceutical Design, 2015; 21: 303-316.
12. Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ*, Zhang Y*. Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease. Cellular and Molecular Neurobiology, 2021; doi: 10.1007/s10571-021-01039-w.
13. Wang ZZ, Li G, Chen XY, Zhao M, Yuan YH, Wang XL, Chen NH*. Chemokine-like factor 1, a novel cytokine, induces nerve cell migration through the non-extracellular Ca2+-dependent tyrosine kinases pathway. Brain Research, 2010; 1308: 24-34.
14. Wang ZZ, Zhang Y, Yuan YH, Chen NH*. Developmental expression of chemokine-like factor 1, a novel member of chemokines family, in postnatal rat cerebral cortex. Neuroscience Letters, 2012; 519: 51-55.
15. Wang ZZ, Yuan YH, Zhang Y, Wang XF, Chu SF, Han N, Chen NH*. Chemokine-like factor 1 promotes the migration of rat primary cortical neurons by the induction of actin polymerization. Neuroreport, 2014; 25: 1221-1226.
16. Wang ZZ, Zhao WJ, Zhang XS, Tian XF, Wang YZ, Zhang F, Yuan JC, Han GZ, Liu KX, Yao JH*. Protection of Veratrum nigrum L. var. ussuriense Nakai alkaloids against ischemia-reperfusion injury of the rat liver. World Journal of Gastroenterology, 2007; 13: 564-571.
17. Zhang Y#, *, Wang ZZ#, Sun HM, Li P, Li YF, Chen NH. Systematic review of traditional chinese medicine for depression in Parkinson's disease. American Journal of Chinese Medicine, 2014; 42: 1035-1051.
18. Xia CY, Wang ZZ, Zhang Z, Chen J, Wang YY, Lou YX, Gao Y, Luo P, Ren Q, Du GH, Chen NH*. Corticosterone impairs gap junctions in the prefrontal cortical and hippocampal astrocytes via different mechanisms. Neuropharmacology, 2017; 131: 20-30.
19. Xia CY, Wang ZZ, Tomioka Y, Chen NH*. A novel mechanism of depression: role for connexins. European Neuropsychopharmacology, 2018; 28(4): 483-498.
20. Jin C, Wang ZZ, Zhou H, Lou YX, Chen J, Zuo W, Tian MT, Wang ZQ, Du GH, Kawahata I, Yamakuni T, Zhang Y, Chen NH*, Zhang DS*. Ginsenoside Rg1-induced antidepressant effects involve the protection of astrocyte gap junctions within the prefrontal cortex. Progress in neuro-psychopharmacology & biological psychiatry, 2017; 75: 183-191.
21. Chen J, Wang ZZ, Zhang S, Chu SF, Mou Z, Chen NH*. The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors. Behavioural Brain Research, 2019; 362: 288-298.
22. Chen J, Wang ZZ, Zuo W, Zhang S, Chu SF, Chen NH*. Effects of chronic mild stress on behavioral and neurobiological parameters - Role of glucocorticoid. Hormones and Behavior, 2015; 78: 150-159.
23. Chen J, Wang ZZ, Zhang S, Ai QD, Chu SF, Chen NH*. Possible target-related proteins of stress-resistant rats suggested by label-free protemic analysis. RSC Advances, 2017; 7: 40957-40964.
24. Chen J, Wang ZZ, Zhang S, Zuo W, Chen NH*. Does mineralocorticoid receptor play a vital role in the development of depressive disorder? Life Sciences, 2016; 152: 76-81.
25. Ren Q, Wang ZZ, Chu SF, Xia CY, Chen NH*. Gap junction channels as potential targets for the treatment of major depressive disorder. Psychopharmacology (Berl), 2018; 235(1):1-12.
26. Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH*. Role of Non-coding RNA in the Pathogenesis of Depression. Gene, 2020;735:144276.
27. Ren SY, Wang ZZ, Zhang Y, Chen NH*. Potential Application of Endocannabinoid System Agents in Neuropsychiatric and Neurodegenerative Diseases-Focusing on FAAH/MAGL Inhibitors. Acta Pharmacologica Sinica, 2020; 41(10):1263-1271.
28. Zhang XL, Wang ZZ, Shao QH, Zhang Z, Li L, Guo ZY, Sun HM, Zhang Y*, Chen NH*. RNAi-mediated knockdown of DJ-1 leads to mitochondrial dysfunction via Akt/GSK-3ss and JNK signaling pathways in dopaminergic neuron-like cells. Brain Res Bull, 2019;146:228-236.
29. Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y*. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacological Research, 2019;146:104336.
30. Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y*. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease. European Journal of Neuroscience, 2021; 53(9):2946-2959.
31. Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y*. Dynamin-related protein 1: A critical protein in mitochondrial fission, mitophagy, and neuronal death of Parkinson’s disease. Pharmacological Research, 2020;151:104553.
32. Zhang Y, Wang ZZ, Sun HM*. Lack of association between p.Ser167Asn variant of Parkin and Parkinson's disease: A meta-analysis of 15 studies involving 2,280 cases and 2,459 controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012; 159B: 38-47.
33. Zhang Y, Wang ZZ, Sun HM*. A meta-analysis of the relationship of the Parkin p.Val380Leu polymorphism to Parkinson’s disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013; 162: 235-244.
34. Zhang Y, Wang ZZ, Sun HM*. Meta-analysis of the influence of Parkin p.Asp394Asn variant on the susceptibility of Parkinson's disease. Neuroscience Letters, 2012; 524: 60-64.